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The density reconstruction of a cylindrically
symmetric object from a single radiographic view
is a classic and important tomography problem. It
comes up in astronomy, the study of plasmas and
flames, and material property studies. In princi-
ple, it has a straightforward solution: if a beam of
radiation, in which all the rays are parallel, passes
through such an object perpedicularly to the axis
of symmetry, then the attenuation of the radiation
is given by the Abel transform. Thus, the radio-
graph has a simple, mathematical description in
terms of the density at each point of the object.
Moreover, this description is invertible: the ob-
ject’s density is given by the inverse Abel trans-
form of the attenuation measured by the radio-
graph. In principle, this allows one to calculate
from the radiograph the density at each point of
the object.

Unfortunately, this approach is of limited use-
fulness. The reason is that the inverse Abel trans-
form will magnify noise present in the radio-
graph, giving a very noisy reconstruction.

One way around this is toregularizethe recon-
struction. Letd be the function giving the density
of the object at each point,r the attenuation mea-
sured by the radiograph,A the Abel transform.
The goal is to determined from r, with d = A−1r
being unsatisfactory. Instead, we choose a reg-
ularization functionalR and a data-fidelity func-
tionalF , and seek to minimize the quantity

R(d)+F(Ad− r).
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Comparing Abel inversions using different regu-
larizations. (a) Density profile of the cross section
of a two-dimensional, cylindrically symmetric ob-
ject. A simulated, noisy radiograph of this object
is produced, and different Abel inversion methods
applied. (b) Unregularized Abel inversion. Ra-
diograph noise is amplified by the inverse Abel
transform. (c) H1 regularization. This regular-
ization forces a smoothness that causes edge in-
formation to be lost. (d) TV regularization. Noise
is suppressed, but edges are preserved.
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A common choice forF is the square of theL2

norm, so that

F(Ad− r) =
∫
|Ad− r|2.

A traditional choice forR is theH1 seminorm:

R(d) = α
∫
|∇d|2,

where∇ is the gradient operator andα is a param-
eter to be chosen. By findingd that minimizes the
sum of these two terms,d will be a smooth func-
tion (to keepR(d) small) whose Abel transform is
close tor (to keepF(Ad− r) small). The size of
the parameterα dictates the relative importance
of the two terms, and should be chosen so that the
data fidelity term will end up being equal to the
estimated variance of the noise. The result is an
approximate Abel inverse having very little noise.

Unfortunately, this method is unsuitable when
the object has sharp changes in density, such as
at the boundary between two different materials.
The smoothness ofd means that its value cannot
change sharply, and information about material
boundaries will be lost. To remedy this, we re-
place the regulzarization term with the total vari-
ation seminorm,

R(d) = α
∫
|∇d|.

The simple act of replacing the exponent 2 with 1
allows discontinuous functionsd to be solutions.
The regularization term still suppresses noise, but
while allowing sharp material boundaries. The
improved performance of this method can be seen
in the figure.

This approach comes with the cost of being
much more difficult to implement computation-
ally. A simple algorithm for computing thed that
minimizesR(d)+F(Ad− r) is the method of gra-
dient descent. However, gradient descent requires
many iterations to converge to a solution. In-
stead, we implemented a form of quasi-Newton
method designed particularly for total-variation
regularized inverse problems, the lagged diffusiv-
ity method of Vogel and Oman. Another improve-
ment was to use the unregularized Abel inverse as

the initial value ofd with which to begin the iter-
ation. The result is an algorithm that converges in
only a few iterations.

Two papers on this work have been submit-
ted for publication. One concerns the theoretical
underpinnings of the optimization algorithm, the
other the numerical implementation and the ap-
plication to radiographic data.
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